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Abstract—Cooperative trajectory mapping is an emerging
technique that allows users to collaboratively map a person’s
movements without using GPS measurements in indoor scenarios.
This is accomplished by letting users periodically transmit limited
amount of information, collected from their mobile phones,to a
central server for processing. Cooperative mapping solutions have
been proposed for applications ranging from people localization
to traffic monitoring. In this paper, we consider the problem
of fake trail attacks in cooperative trajectory mapping. In a
fake trail attack, the adversary seeks to create a fraudulent
shorter path between two locations. The unique characteristics of
cooperative mapping make conventional wormhole defenses,such
as packet leashes, unsuitable. We propose an efficient algorithm
which can successfully deter an adversary from launching such an
attack, and we validate the effectiveness of our solution through
extensive simulation experiments.

Index Terms—Fake trail, localization, navigation, security.

I. I NTRODUCTION

The functionalities of smartphones continue to grow with
many such phones now being equipped with hardware such
as sensors and accelerometers. Cooperative trajectory map-
ping is an emerging technique that takes advantage of the
capabilities of these smartphones to allow users to combine
the data collected from their phones to create maps of user
movements in an unknown indoor region. This type of map
is known as atrajectory map. Trajectory maps are used in
various applications such as people localization [1]–[3],public
transportation tracking [4]–[6], and traffic monitoring [7].

Cooperative trajectory mapping typically does not use the
phone’s GPS in order to avoid the weak signal issue in
indoor conditions. Instead, the smartphone’s accelerometer and
compass are used to determine the displacement and moving
direction of a user [8]. This data is periodically transmitted to
a central depository which collects and processes the readings
from multiple users to arrive at a trajectory map. Prior workon
cooperative trajectory mapping focuses on building the system
and improving map accuracy, and assumes that all participants
are honest. However, the presence of malicious users can have
a detrimental effect on the final trajectory map.

We can illustrate the effects of a malicious user in Fig. 1.
Here, we assume that the trajectory map is used to locate
friends in an indoor scenario. In Fig. 1, userA is trying to
locate userB. Using the collected data (Figs. 1(a) and (b)), the
central depository computes the shortest path fromA’s current
position toB (shown by the arrow lines in Figs. 1(c) and (d);

the background map is not available to the server). Assuming
that A is walking faster thanB, A will eventually catch up
with B. In Fig. 1(a), a malicious user,adv, reports a fake
path. The depository may use this incorrect information and
compute a different path forA. This path is incorrect since
it requiresA to go though the walls of a room, as shown in
Fig. 1(c). Without adequate protection from malicious users,
the resulting trajectory map will be inaccurate.

In our paper, we name this type of attack asfake trail attack
since the adversaries launch the attack by reporting some fake
trajectories or fake encounters with other users. The fake trail
attack is similar to a wormhole attack, considered in ad hoc
networks [9], since we can consider the intersections as nodes
and road segments as links of nodes. In a traditional wormhole
attack, the adversary will maintain an out-of-band connection
between two physical locations in the network. Using this
out-of-band connection, the adversary creates a wormhole that
can let nodes that are far away from each other appear to be
neighbors [10]. As a result, the routing algorithm in ad hoc
networks will report an incorrect path between two locations.
In our cooperative trajectory mapping problem, an adversary
that reports a fake path between two locations will create a
wormhole between those two locations. The effect is the same
as the traditional wormhole attack since the central depository
will use this incorrect information to derive incorrect paths for
users.

However, the unique characteristics of cooperative mapping
make it difficult to apply existing wormhole defenses.

Firstly, traditional wormhole detection mechanisms assume
that every node’s sensorial range isR. We can estimate the
distance between any nodes based on the neighboring table.
In our model, the length of each road segment may be not the
same; the number of intersections is not a constant but will
grow.

Secondly, conventional wormhole attacks are strongly relat-
ed to the geometry of the network: most wormhole detection
algorithms assume that partial information about a wormhole-
free case is available. However, in cooperative trajectory
mapping, the original map data is not available to the server.

Lastly, traditionaltime and spatial leash-based wormhole
defense approaches let the data packages identify the worm-
hole; however, in our problem, we have people following
the route rather than packets. Unlike packets which can be
retransmitted easily, moving people to alternative routesis time
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Fig. 1. The effect of a wormhole attack. There are two honest users and
one adversary in the example. Fig. 1(a) shows the reported trajectories of the
three users. Fig. 2(b) are the reported trajectories without the adversary. The
routine results are shown in Figs. 2(c) and 2(d). The shadow areas represent
rooms, and we assume that each room has only one door: people cannot go
through the rooms.

consuming.
In our paper, a novel centralized algorithm is designed for

the detection of fake trail attacks. Considering the uncertainty
of a user’s instant location, we first estimate the feasible
position of every user at timet based on the reported trajectory.
After that, we determine whether two users will definitely have
physical encounters, may have physical encounters, or will
definitely not. Then, we compare our estimation results with
the reported encounter records. If there is an inconsistency
among the data, we will give some penalty to the users. After
observing enough time, we use two thresholds to classify the
users into three groups: “honest group”, “adversary group”
and “suspicious group”, and differentially use the data from
different groups.

The contributions of the paper are as follows:

1) We are the first to explore the problem of fake trail
attacks in the context of cooperative trajectory mapping.

2) We propose a witness-based detection algorithm that
is effective against multiple, non-collusive, adversaries.
Our algorithm acts as a deterrent to adversaries seeking
to attack the system.

3) Extensive simulation experiments were used to validate
our solution.

The remainder of the paper is organized as follows. In
Section II, we introduce some related work. The system model
and attack model are given in Section III. In Section IV, we
provide theorems and a corollary for wormhole detection, and
a novel wormhole detection and isolation algorithm is present-
ed. The performance analysis and evaluation are described in
Section V. We make a conclusion and provide future research
in Section VI.

II. RELATED WORK

The idea behind the cooperative trajectory mapping problem
considered in this paper was proposed by [8]. There, a mobile
social network-based navigation system is designed. Each user
periodically reports his trajectory and encounter information to
the server, then the server can reply with a routine to the user
in order to help the user find others. Other work by [11], [12]
also used similar ideas for cooperative trajectory mapping. The
main difference is that prior work only considers honest users.
Our work focuses onnon-colluded, dishonest users that will
intentionally report incorrect paths to disrupt the system.

Detecting fake paths in cooperative trajectory mapping
shares similarities with traditional wormhole detection in ad
hoc networks. In a wormhole attack, the adversary will attempt
to convince other nodes that a path exists between two loca-
tions when, in fact, there is no path between the nodes. Using
the same methodology as [10], we divide wormhole detection
techniques into centralized and decentralized solutions.

Centralized wormhole detections, such as statistic detection
[13]–[15] and multi-dimensional scaling [16], [17], rely on the
server knowing certain node distributions or network geomet-
ric layout information, and using this information to detect
the wormhole. However, in our trajectory mapping problem,
the server does not have any knowledge about the real map,
except for the reported moving trails of users. In fact, the
server builds up a map using the mobility paths of users. Thus,
existing centralized wormhole detection techniques cannot be
applied to our problem.

Decentralized wormhole detection techniques rely on the
nodes within the network to monitor the other nodes or
data transmissions to detect a wormhole. Work by [18]–
[20] requires a node to monitor the topology structure of its
neighbors, while [21] lets the node monitor the input and
output traffic flows. Other techniques that rely on cryptograph-
ic monitoring include packet leashes [22], TESLA [23], and
distance bounding [24]. The main difference is that, in our
problem, an individual node-reported path may not be used
until it can be associated with information from a fixed AP
or the global uniform coordinate system. Thus, a node cannot
monitor other nodes in our problem.

III. B ACKGROUND

In this section, we will first introduce the system model
in our problem. After that, we will discuss how to build a
trajectory map based on the system. Finally, the adversary
model will be presented.

A. System Model

A cooperative trajectory mapping system has the following
three basic components.

1) A service provider.The service provider deploys a server
to collect user data and to use that information to build
and prune the trajectory map. The provider also provides
additional services based on the eventual map, such as a
friend locator. Except the collected data, the server does
not have any domain knowledge about the real map.
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ID  length   direction  time

A   5 units   0            t1
A   8 units   270          t2
A   8 units   0            t3
B   4 units   90            t4

Fig. 2. System model. The system normally contains a centralserver and
several users. Each user periodically reports his trajectory in the form of
displacement and direction. The access point is an optimal component, which
can increase the chance for error cancelation.

2) Users.Users report their trajectories and encounters to
the server.

3) Access point (AP).An AP is an additional, optional
component. It works as a fixed location reference, such
as a WiFi access point, whose physical location is
known. The AP will periodically broadcast beacons.
The purpose of the AP is to quickly establish the
spatial relationship between each user’s local movement
trails and the actual physical coordinates. If all of the
reported trails are noise-free and all of the trails are
interconnected with each other, the additional AP is
useless.

We assume that there areM users that participate in this
system and that everyone’s clock is loosely synchronized.
Each user’s mobile phone is equipped with an accelerometer,
a compass, a wireless receiver, and an encounter sensor.
The accelerometer and compass are used to determine that
user’s displacement and direction, respectively. The wireless
receiver, for instance a WiFi radio, is used to receive beacons
transmitted from the AP. The encounter sensor is used to
periodically signal the user’s presence as well as record the
presence of other users. This can be accomplished using a
Bluetooth module built into the smartphone. For instance,
when userA walks past userB, A’s phone will record as
“encounteringB”, while B’s phone does the same. We use
the UDG (Unit Disk Graph) model to represent the sensorial
range of an encounter sensor.

B. Building a trajectory map

A valid user will maintain two lists in his smartphone:move-
ment list(ML) and encounter list(EL). The ML consists of a
serial of displacement from the last recorded position. Thetu-
ples in ML are{senderID, displacement, direction, time}.
The encounter information, which is the information about
meeting with other users, is obtained by an encounter
sensor. When a device learns about an encounter with
another device, it will create an entry in the EL, as
{senderID, time, encounter′sID}. The device of each user
will periodically report these two lists to the server via a 3G
connection.

However, the trajectories of each user are recorded in
their own isolated coordinate system, which is only relative
to the initial (unknown) location of the user [8]. If all of
the trajectories are connected with each other (spatial and
temporal encounters), the server can compute the relatively
spatial relationships of intersections. Otherwise, we need a
public location reference to provide unique spatial information
about all of the users such that the spatial encounter near anAP
can also be used as a real physical encounter. In a cooperative
trajectory mapping system, an AP is randomly set at a place.
When a user passes by the communication range of the AP,
the user will also record the AP as an encounter. From the
trajectories of the users, who have AP encounter records, the
users’ individual trails can be moved into a uniform coordinate
system by joining the places of an AP encounter together.
After A has passed by B, who has passed an AP, the trail
of A will also join the uniform coordinate system since the
spatial relation betweenA and the AP can be obtained by that
of B and the AP, andA andB.

The server applies two variables to store the reported data:
the first one is used to store the trajectories which have already
joined the uniform coordinate system, and the second one is
used for temporarily storing the space-relation unknown trails.
Therefore, once a space-relation unknown user can reference
to the AP, the server will move his historical trails from the
unknown group to the other group.

One application of the trajectory map is a friend locator,
which can be accomplished as follows: every user periodically
reports his movement traces to the server, and the server stores
the reported data. Periodically, the server will use the data to
build or update a map by adding the new found paths to the
map. Since the server records the current position of each user,
the service provider can use the built map and the recorded
location to find the shortest routine between users.

C. Adversary Model

The goal of an adversary is to launch a wormhole attack
by creating a fake, shorter path between two locations. If the
distance between the fake path and the real path is less than a
system defined valueRe, then we consider it as an estimation
error. We assume that the server has some other algorithm to
deal with estimation errors. Thus, the adversary has to select
a fake path that deviates from an actual path by at leastRe.

We assume that there are multiple adversaries, but they
are all working independently. The number of real users is
assumed to be larger than the number of adversaries. An
adversary can create a fake path by manipulating the ML
or the EL. The adversaries can modify or create any item
in their current ML and report them to the server such that
some shorter, fake paths will be included in the trajectory
map. Adversaries can also modify or create any record in their
current EL and report them to the server such that some real
users’ trajectories will be wrongly added in the map, which
may also generate some shorter but nonexistent paths.

In our paper, if the adversary reports a trajectory, which he
did not follow, but the trajectory corresponds to an existing
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path on the map, we do not regard it as an attack. However,
if the associated encounter information with this trajectory is
wrong, we view it as a fake trail attack.

IV. D ETECTION ALGORITHM

In this section, we will present our adversary detection
algorithm. The structure of this section is as follows: In the
beginning, we will present the intuition behind our solution.
Then, our adversaries detection and isolation (ADI) algorithm
will be discussed in detail. The trajectory-based encounter-
type prediction is a key function used in the ADI algorithm.
We will also discuss this prediction in this section.

A. Intuition

A key feature of cooperative trajectory mapping is that when
a user encounters another user, each user will independently
report encountering the other user to the server. The intuition
behind our algorithm is to make use of this feature to detect
an adversary. We illustrate the intuition using the following
example.

Consider an adversary that is physically at locationα (locα)
but reports to the server that he is atlocβ. Since the adversary
is not atlocβ, he cannot determine whether there are any users
at locβ. Considering that there is a large number of users in
real applications, the probability of guessing correctly is very
small, and we do not consider this case. Now, let us assume
that an honest user is atlocβ . Since the adversary is not atlocβ,
the honest user does not report encountering the adversary.
This results in an inconsistency, or anabnormal event, since
a supposed encounter did not occur. The honest user hence
acts like awitnessthat can be used to identify an adversary.
Over time, an adversary will be associated with more abnormal
events than honest users, and the server will use this as a means
of identifying adversaries.

Based on the above idea, in this paper, we present the
adversaries detection and isolation (ADI) algorithm. In the
ADI algorithm, we assign a suspected degree to each user.
The suspected degree presents the percentage of abnormal
events to the number of encounters. The algorithm periodically
checks the intersections of each pair of users, estimating the
possibleencounter-typeof the users. There are three types
of encounters: two users cannot encounter, may encounter
or must encounter with each other. Then, we use the esti-
mated encounter-type to compare with the reported encounter
information. By this way, we can find the abnormal cases:
(i) must meet with no encounter, (ii) impossible meet with
an encounter(s), and (iii) those with a single-sided encounter
record. We update the suspected degree based on the detected
abnormal events. After enough data is collected, we use pre-
defined thresholds to find out the identities of the adversaries,
suspicious and honest users.

The key challenges behind our algorithm are: (a) how to
correctly determine abnormal events from a set of trajectories
and encounters. Since the exact movement patterns of users
are unknown and the server is only given the displacements

and its corresponding time, there is uncertainty about the hap-
pening of encounters; (b) how to correctly assign a suspicious
degree to the found abnormal cases since assigning wrong
suspicious degree may cause an honest user to be regarded as
an adversary.

B. Adversaries Detection and Isolation (ADI) Algorithm

When the server runs the ADI, it traverses all displacements
and encounter records to find whether there are abnormal cases
in which the trajectory information is inconsistent with the
encounter records, as shown in Algorithm1.

Algorithm 1 Adversaries detection and isolation algorithm
(ADI)

1: SD.suspect= 0, SD.witness= a small non-zero number
2: for each time periodT do
3: if the result of TBEP (Algorithm2) or encounter records

satisfy the requirement of being a witnessthen
4: SD.witness=SD.witness+1
5: if the result of TBEP conflicts with encounter recordsthen
6: SD.suspect=SD.suspect+1
7: Find the suspects by threshold
8: Build trajectory map without using the data of suspects
9: Return: identities of suspects and the cooperative trajectories map

In the beginning of the ADI algorithm, each pair of users
u andv is assigned with a suspected degreeSD(u, v).

SD(u, v) =
SD.suspect

SD.witness

The initial value ofSD(u, v) is zero. The suspected degree
consists of two parts. The first part (SD.suspect), the nu-
merator, is a suspected penalty counter. The ADI algorithm
will check every users’ reported displacements. Based on the
displacements, we can estimate the possible encounter-type of
the users. The trajectory-based encounter prediction algorithm
(TBEP) will be presented in the later part of our paper. Once
the algorithm detects an inconsistency between the encounter
prediction result and the reported encounter information,the
SD(u, v) of the users will be given a penalty. Admittedly,
an adversary with knowledge of the ADI algorithm might
intentionally frame honest users by reporting false encounters.
We will discuss some details in Section VII. The second part
(SD.witness), the denominator of the suspected degree, records
the times of being a witness: (i) the user’s trajectory encounter
with others’ trajectories, or (ii) there is an encounter report
about the user.

After observing the reported information for a long enough
time, we can classify the users into three groups: an “honest
group”, a “suspicious group”, and an “adversary group” by
using two pre-defined cluster thresholds, threshold1 and
threshold 2 (threshold 1 > threshold 2). If the value of
∑

v SD(u, v) is above threshold1 or below threshold2, the
corresponding users belong to the “adversary group” or the
“honest group”, respectively. The remaining users fall into
the “suspicious group”, which needs to be further investi-
gated (observing more time). In the phases of building the
cooperative trajectory map, we first build the map only using
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the trajectories of the honest users. Then, we only partially
and temporarily revise the map if there is no path between
two users without the corresponding paths from the suspicious
group’ trails. We do not use the data from the adversary group.

C. Trajectory-based Encounter-type Prediction (TBEP)

The function of the TBEP algorithm is to estimate the
encounter-type of any two given trajectories. In this part,
we will first present the definition of some terms which
we will use. Then, we will introduce the TBEP algorithm.
Finally, some related theorems will be presented. The details
of the help functions, which the TBEP algorithm calls, will
be discussed in the next section.

We will illustrate TBEP by using the example in Fig. 3.
There are two displacements of usersA and B (Fig. 3(a)).
We assume that they finished the displacements at the same
time. If we can obtain the instant speed of the users at any
time, we can clearly find out when and where those two users
met with each other in the past. However, determining the
exact position of each user at any point in time is difficult to
obtain without knowing the instant speed. Knowing the instant
speed of a user is difficult to obtain in a realistic scenario.

However, considering the maximum speed limitation, we
still can find a user’s feasible position bound at any time.
The feasible position boundis a time related function, which
restricts a user’s possible position at a given timet by
indicating the farthest and nearest locations of where the user
could have reached. If the user moves along a line, there are
two end points of the position bound. The first point is used to
describe that the user waits at the beginning, then moves to the
destination with maximum speed; the second point is used to
describe that the user first moves with maximum speed, then
waits at the destination. As a result, the feasible positionof a
user at timet will be a segment.

Definition 1: for any displacement, going along the moving
direction, we name the farthest position that the user can get to
at timet as the head end point, and the corresponding sensor
area as head sensor area; we name the nearest position as
the tail end point and call its sensor area as the tail sensor
area.

Fig. 3(b) illustrates the feasible position bounds of one user.
The user’s real moving pattern could be any lines inside the
parallelogram, except that the slope of the line must be smaller
or equal to the slope of bounds. Since each user is equipped
with an encounter sensor, the shape of the possible sensor
region of a user at any time is similar to anellipse, which is
the union of a group of circles whose center is located at the
possible position segment, as shown in Fig. 3(c).

TBEP algorithm. As one of the key building blocks of
our solution, the TBEP algorithm presents the way for the
server to determine the encounter-type of the given trajectories,
which can be further used to determine whether abnormal
events occur. After receiving the respective displacementof
two users, the server first uses the position function (~p())) to
estimate the latest moving time and the fastest arriving time
of a user. Then, the server applies the Possible Trajectory

TABLE I
TABLE OF NOTATION FORTBEP

tB beginning shared time of two displacements
tE end shared time of two displacements
{(xA

i , y
A
i , tAi )} a series of displacements of userA in T

Smax maximum speed
EC potential encounter conditions and time
d length of a displacement
SFH head boundary function
SFT tail boundary function
ER encounter records
R sensing range
PTB() possible trajectory boundary function
IT () time-space relation function

Algorithm 2 Trajectory-based encounter prediction (TBEP)
algorithm

1: Input:{(xA

i , y
A

i , tAi )}, {(xB

i , yB

i , tBi )}, Smax, R
2: Output:EC
3: Compute SFH and SFT of both A and B, by run

PTB({(xA

i , y
A

i , t
A

i )}, {(x
B

i , y
B

i , tBi )}, Smax, R).
4: if IT ({(xA

i , y
A
i , t

A
i )}, {(x

B
i , y

B
i , tBi )}, R) can encounter in cor-

responding timethen
5: EC.Type =“must meet”,EC.T ime = corresponding time
6: else
7: if IT ({(xA

i , y
A
i , tAi )}, {(x

B
i , yB

i , tBi )}, R) cannot have en-
counter in corresponding timethen

8: EC.Type =“cannot meet”,EC.T ime = corresponding
time

9: else
10: EC.Type =“may meet”,EC.T ime = corresponding time
11: SortER’s tuples according to encounter type and time.
12: Return: encounter conditions

Boundary function(PTB()) to compute the users’ feasible
position bounds in X-Y-T space as: the space function ofA’s
head end point,SFH(A); the space function ofA’s tail end
point, SFT (A); the space function ofB’s head end point,
SFH(B); the space function ofB’s tail end point,SFT (B).

Theorem1: If all of the distances of{SFH(A), SFH(B)},
{SFT (A), SFH(B)}, {SFH(A), SFT (B)} and {SFT (A),
SFT (B)}) are greater thanR in this time period, the two
users cannot meet with each other, and therefore the server
should not contain the corresponding encounter records, as
shown in Fig. 4(a)

Proof: It is obvious since all of the distance between the
two users are greater than theR.

Theorem2: If some of the distances, but not all of the
distances of{SFH(A), SFH(B)}, {SFT (A), SFH(B)},
{SFH(A), SFT (B)} and {SFT (A), SFT (B)}) are greater
thanR in this time period, the two users may meet with each
other.

Proof: It is also obvious since some trajectories of the
two users can encounter with each other and some cannot.

Theorem3: If all of the distances of{SFH(A), SFH(B)},
{SFT (A), SFH(B)}, {SFH(A), SFT (B)} and {SFT (A),
SFT (B)}) are less thanR, or are equal toR in this time
period, the two users cannot meet with each other, and there-
fore the server should contain the corresponding encounter
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records.
Proof: The feasible position bounds of the two users are

two parallelograms in X-Y-T space. We name the feasible
position bound in X-Y-T space as theFeasible Position Region.
Since the space is continuous and all of the edges satisfy the
conditions for encountering with each other, any pair of lines
inside the parallelograms must encounter with each other.

The relation betweenR and the distance of two lines can
be computed by the Intersection function(IT ()).

V. TECHNICAL DETAILS

In this section, we will present the technical details about
our solution. First, we will introduce the position function
which we used to indicate the feasible position of a user at a
given time instance in X-Y coordinates. The possible trajectory
boundary function is the extension of the position functionin
X-Y-T space, which will be discussed at the second part of this
section. After that, the intersection function will be presented.
We use the intersection function to estimate the encounter
conditions of two users’ feasible positions. In the last part
of the section, we will define what is an abnormal event and
will explain why we classified the entire encounter conditions
into three groups: “probably honest”, “probably dishonest”,
and “uncertain”.

A. Position function (~p())

Given one displacement of a user’s trajectory, the location
of the user can be presented by~p(t), as shown in Fig. 3(b).
Suppose that a user reported one displacement from location
~p(t1) to ~p(t2) at time fromt1 to t2 (t1 < t2), and the length
of this displacement equalsd. We also assume that the speed
range of a user is[0, ~Smax].

~p(t) =















































[~p(t1), ~p(t1) + ~Smax(t− t1)],

t ∈
[

t1, t2 −
d

|~Smax|

]

[~p(t1) + ~Smax(t− t2 +
d

|~Smax|
), ~p(t1) + ~Smax(t− t1)],

t ∈
(

t2 −
d

|~Smax|
, t1 +

d

|~Smax|

]

[~p(t1) + ~Smax(t− t2 +
d

|~Smax|
), ~p(t2)],

t ∈
(

t1 +
d

|~Smax|
, t2

]

In order to simplify the solution, we add a new dimension
“time” into the traditional X-Y coordinates. Therefore, Fig.
3(a) can be converted to Fig. 4. The displacement of each
user is represented by a parallelogram in X-Y-T space. The
projection of the parallelogram on the X-Y plane is the same
segment in Fig. 3(a). The lines, which are parallel with the
t-axis, represent the situation of not moving. Because of the
speed limitation, the slope between any two points in the same
parallelogram should be less or equal to the maximum speed.
The real trajectory of the user in X-Y-T space will be a curve
in the parallelogram. Hence, ifA andB meet with each other,
their real trajectories must intersect in X-Y-T space. In X-Y-
T space, the position function~p(t) will be converted to the
possible trajectory boundary function (PTB()) .

TABLE II
TABLE OF NOTATION FOR HELPER FUNCTIONS

~p(t) user’s position att in system’s coordinates
Smax the maximum speed
(xA

i , y
A
i , tAi ) a piece of displacements of userA in T

(xA
1 (t), y

A
1 (t)) location whereA started the displacement

(xA
2 (t), y

A
2 (t)) location whereA ended the displacement

tA1 time that userA began the displacement
tA2 time that userA finished the displacement
d length of a displacement
(xA(t), yA(t)) possible location ofA at given timet
(xA, yA) the location ofA at any time
R sensing range
a,b,c,d temporary parameters

B. Possible trajectory boundary (PTB()) function

The PTB() function provides the two position bound-
s of a user in X-Y-T space. It has four inputs:
{(xA

i , y
A
i , t

A
i )}, {(x

B
i , y

B
i , tBi )}, Smax and R. The user first

moves with maximum speed to finish the reported displace-
ment, then stays still at the end of the displacement; the
user can also wait first at the beginning point, then finish the
displacement just on time. Therefore, there are two trajectory
boundary functions. The head boundary function is:

xA − xA
1

xA
2
− xA

1

=
yA − yA

1

yA
2
− yA

1

=
tA − tA

1

d/Smax

The tail boundary function is:

xA − xA
1

xA
2
− xA

1

=
yA − yA

1

yA
2
− yA

1

=
tA − (tA

2
− d/Smax)

d/Smax

Given a pair of displacements, if we know that the users
covered the displacements by a constant speed, we can use
the intersection function (IT())to check whether an encounter
happened.

C. Intersection (IT()) function

We use the IT() function to determine whether the two
given users can encounter each other. It has three inputs:
{(xA

i , y
A
i , t

A
i )}, {(x

B
i , y

B
i , tBi )} andR. Assume that there are

two users namedA and B. They all report one displace-
ment, and we also assume that they all moved at maxi-
mum speedSmax. We assume that the beginning time is
tA
1

, and the end time istA
2

. At the same time, the initial
position is (xA

1
, yA

1
), and the end of the displacement is

(xA
2
, yA

2
). Therefore, the displacement ofA can be represented

as ((xA
1
, yA

1
, tA

1
), (xA

2
, yA

2
, tA

2
)). Similarly, we also haveB’s

displacement as((xB
1
, yB

1
, tB

1
), (xB

2
, yB

2
, tB

2
)). Now we want

to compute when and where these two users can generate
the encounter records. Firstly, the trajectory of a user canbe
represented as follows in a 3-D space, where the x-axis is one
possible moving direction and the y-axis is the perpendicular
direction to the x-axis. The third direction is time.

xA − xA
1

xA
2
− xA

1

=
yA − yA

1

yA
2
− yA

1

=
tA − tA

1

tA
2
− tA

1
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The trajectory ofB from tB
1

to tB
2

can be represented as
follows:

xB − xB
1

xB
2
− xB

1

=
yB − yB

1

yB
2
− yB

1

=
tB − tB

1

tB
2
− tB

1

Hence, to a given timet, whether a piece of encounter record
will be generated or not can be determined by the truth value
of following formula:

(xA(t)− xB(t))2 + (yA(t)− yB(t))2 ≤ R2

After usingt to representxA(t), xB(t), yA(t) andyB(t), we
can get:

(a2 + c2)t2 + 2(ab+ cd)t+ (b2 + d2 −R2) ≤ 0,

where:

a =
xA
2
− xA

1

tA
2
− tA

1

−
xB
2
− xB

1

tB
2
− tB

1

b = −(
xA
2
− xA

1

tA
2
− tA

1

)tA
1
+ (

xB
2
− xB

1

tB
2
− tB

1

)tB
1
+ xA

1
− xB

1

c =
yA
2
− yA

1

tA
2
− tA

1

−
yB
2
− yB

1

tB
2
− tB

1

d = −(
yA
2
− yA

1

tA
2
− tA

1

)tA
1
+ (

yB
2
− yB

1

tB
2
− tB

1

)tB
1
+ yA

1
− yB

1

D. Abnormal Events

Here, we define what is an abnormal event. From the
view of the server, it can observe two things: trajectories
and encounter records. The trajectories of two users have
three encounter-types: must meet, potentially meet, and cannot
meet. The encounter records about two users at a given time
can also be classified into three kinds: no encounter, single
encounter, and two encounters. Based on the given trajectories,
we can classify the observations made by the server into
three groups: an “uncertain” group, a “probably honest” group,
and a “probably dishonest” group for all of the9 kinds of
combinations. An abnormal case will fall under the “probably
dishonest” group.

The “probably honest” group represents the conditions: (i)
at a given timet, the position bounds of two users satisfy
the condition of “must meet,” and there is a pair of accordant
encounter records in the server; or, (ii) the trajectories of two
users satisfy the case of “may meet”, and a pair of consonant
encounter records is stored in the server. If both of the two
users are honest, the happening of the conditions (i) and (ii)
is obvious. However, if one of the users or both of them are
the adversaries, then they can only be classified as “probably
honest” only if the adversary can correctly guess the identity
of the other party. The probability of this is negligible.

The “uncertain” group also consists of two conditions: (i)
the trajectories of two users satisfy the case of “may meet”,
and there is not any encounter record; or, (ii) the trajectories
indicate the condition of “cannot meet”, and there is no
encounter record. We cannot conclude anything about the
identities from these two cases. If both of them are honest
users, these two conditions can happen; If there is one or
two adversaries, the two conditions can still happen with a
high probability. For the condition (i), when there is only one
adversary, the adversary can report a fake path, which has a
spacial intersection with the path of the honest user, and the
real path of the adversary does not encounter the honest user’s
path. If both of them are the adversaries, they just report two
spacial intersected paths, but they do not encounter each other
in fact; then, the condition (i) happens. As for the condition
(ii), if there is a pair of “impossible meet” paths and the real
path of one adversary does not encounter the other user, no
matter whether the identity of the other one is honest or not,
condition (ii) can happen.

Except the above4 conditions, the remaining5 conditions
belong to the “probably dishonest” group where at least one
of the users could be an adversary.

Theorem4: an adversary is more likely to be associated
with an abnormal case than an honest user if the number of
real users is greater than that of the adversaries.

Proof: assume thatp is the probability that two users meet
with each other at a given time. Suppose that the number of
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two trajectories may have encounter records. Fig. 4(c) two trajectories must have encounter records.

real users isa, the number of the fake users isb, anda >> b.
For a real user, the reason for having abnormal data is that he
encountered the adversaries’ real paths or fake paths. Hence,
given the condition that a real user meets with another user,the
conditional probability that the given user meets an abnormal
event is2b/(a− 1 + 2b). However, given an adversary, if his
real trajectory comes across the trajectories of real usersor
other adversaries’ real trajectories, or if the given adversary’s
fake trajectory meets with the trajectories of real users orother
adversaries’ fake trajectories, he may encounter inconsistent
conditions. Therefore, given the condition that a fake user
meets with another user, the conditional probability that the
given user potentially meets an abnormal event is1.

VI. PERFORMANCEANALYSIS AND EVALUATION

In this section, we will first describe our simulation setup.
Then, our evaluation metrics will be presented. The simulation
results and analysis will be given at the last part of the section.

A. Experimental Setup

We use Matlab to make the simulation. The users’ trajec-
tories are generated by Levy walks mobility model [25] and
users’ real traces1

In the simulation based on synthetic data, we first randomly
generate50 test groups, and each group contains the trajec-
tories of 50 users. We let the period of the location updates
be 60 sec, and we observe each user for6, 000 time units.
We set the size of the target area as500× 500 distance units.
The silence time period is changed from0 to 10 seconds. The
mobility model’s parameterα equals1, andβ also equals1.
We also set the minimum flight length as60 distance units, and
we set the maximum flight length as100 distance units. When
users get the boundary of the target region, we usereflection
to ensure that the total number of users do not change.

We assume that the encounter sensor range isR. In the sim-
ulation, we mainly useR = 5 distance units. The maximum

1The real data comes from RAWDAD, which is a community re-
source for archiving wireless data at Dartmouth. The data set we used
names ncsu/mobilitymodels/GPS2009072392200907232009-07-21. The data
was collected by GPS from NCSU, North Carolina, USA, 2009.

speed of users is represented bySmax, and we mainly let it
be 3 distance units per second. In each time unit, the user
randomly picks a speed from0 to Smax to be the real moving
speed in the time unit. During simulation, we randomly select
NReal users’ traces as the real users’ trajectories. We select
NAR users’ traces as the fake trajectories of adversaries, and
we also selectNAF users’ trajectories as the real hidden
trajectories of the adversariesNAR = NAF . After dividing
the trajectory data set, we first compute the encounter records
if adversaries report their real traces, which also means there
are no adversaries.

During the computation of encounter records, we assume
that each user finishes the displacements by the average speed
in this segment. When the distance between two users is less or
equal to the sensorial rangeR, we record the identities of these
two users, and we also record the beginning and the end time
of this encounter record. Then, we observe the displacements
of users for a period of time. In each time period, we use
the reported trajectories of users to check whether there are
some abnormal cases. If we find an abnormal case, we will
give a penalty to both of the users. After observing the traces
for a pre-defined period of time, we rank the suspecting list
in descending order and pick the firstNAR users as the
adversaries.

In the simulation based on real data, we have the moving
trajectories of35 users. We randomly set the identity of users
as real users’ trajectories, adversaries’ real trajectories, and
adversaries’ fake trajectories. For example, if there are5
adversaries, then we randomly choose5 from the data set as
their real moving paths, and we randomly choose another5
as their reported fake trails. The data set, which we used,
records the positions of a user in2, 604 reporting time units.
The setting for the rest of the parameters is the same as the
setting in the synthetic data based simulation.

Considering the length of observation, the adversaries’ den-
sity, the users’ density, and the length of users’ sensorialranges
will effect the accuracy of the adversary detection algorithm;
we use the simulations to analyze the following relations:

1) The relationship between the length of observation time
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and the accuracy of our proposed detection algorithm.
2) The relationship between adversaries’ density and the

accuracy of our proposed detection algorithm.
3) The relationship between users’ density and the accuracy

of our proposed detection algorithm.
4) The relationship between the length of users’ sensorial

ranges and the accuracy of our proposed detection
algorithm.

B. Evaluation Metric

Our evaluation was independently made in two different
assumptions, and therefore two metrics were used in our
evaluation. In the first part of our simulation, we assume
that the central server somehow knows the total number of
adversaries. Although this assumption seems unrealistic,our
simulation results are still valuable if the social scientists can
predict the average number of adversaries by some statistic
model since the auxiliary information will increase the speed
and the accuracy of detecting the adversaries. The first metric
we used to evaluate our algorithm is termedAccuracy. This is
computed as the following:

Accuracy =
Number of successfully detected

Total number of adversaries
The second part of our evaluation is based on the assumption

that there is no auxiliary information about the number of ad-
versaries. During the simulation, we use the cluster algorithm
to automatically classify the users into two groups based on
their suspected degree, which is computed by our algorithm.
The metrics we applied in this part are False Positive Rate
(FPR) and False Negative Rate (FNR).

FPR =
FP

FP+TN
, FNR =

FN
TP+FN
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where FP is the number of false positive, FN is that of false
negative, TP represents the total amount of true positive, and
TN represents that of true negative.

C. Simulation Results

Fig. 5 indicates the relationship between the accuracy of
our proposed algorithm and the length of observing time. In
the synthetic data-based simulation, which is shown in Fig.
5(a), we randomly select40 users from each test group as the
real ones, and we also randomly pick5%, 15%, and25% of
users as the adversaries. We use our algorithm to detect the
wormhole makers by observing the traces of users for a period
of time (100 × 60 seconds). We repeat our experiments50
times and use the average value of results to draw Fig. 5. From
the simulation results, we could find that the accuracy of the
proposed algorithm is increased with the growth of observing
time. From an analytical point of view, as the observing time
increases, there will be more intersections between users’
trajectories in temporal-space. Hence, we can obtain more
“witness points”, which may contain the abnormal cases.

Fig. 5(b) shows the relationship between the length of
observing and the accuracy in the real trace. In our experiment,
we randomly select25 users as the real ones and5 users as
the adversaries. We set the sensor range as350 distance units.
We repeat our experiment50 times and get Fig. 5(b) as our
result. This result is consistent with the synthetic data’sresult.

However, having more observing time also costs more
resources to compute. In order to compare the effectiveness
of other components, in the later simulation, we always use
50× 60 seconds as the default length of observing time, and
we use350 time units as the default length of observing time
in real trace-based experiments.
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The ratio of adversaries out of the total number of partici-
pants can be used to evaluate the influence on accuracy. Fig.
6(a) represents the relation between this ratio and the detection
accuracy by using synthetic traces. With the increasing number
of adversaries, the accuracy of detection goes down since the
trust of users becomes less and less. Fig. 6(b) is our experiment
based on real data. We repeat our simulation30 times.

The density of users in a region is also an important factor
which influences the accuracy of detection. Fig. 7(a) illustrates
the relation between participant density and the accuracy.In
the simulation, we randomly generate50 test data sets, and
we respectively check the accuracy from density equaling5
per500×500 area to40 per500×500 area. Also, we assume
that the percentage of adversaries is20% and40%. Fig. 7 is
the average result of our simulation. From the image, we can
realize that a higher density of users will bring more accuracy,
which can be verified by our experiment results based on real
traces, which is shown in Fig. 7(b).

Figs. 8 and 9 show the relationship between the encounter
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sensor range and the detection accuracy. In the synthetic data-
based simulation, we select30 users’ trajectories as the traces
of real users in each test group, and we select another10
users’ trajectories as the real traces of the adversaries. Then,
we obverse60 × 60 seconds. Since our proposed wormhole
detection and isolation algorithm is based on abnormal cases
in the encounter area, the accuracy of our algorithm will be
increased when there are more encounter conditions. Using
a larger sensorial rangeR will provide more chances for
encountering the other users. However, if the value ofR
exceeds a value, the accuracy will become less since there may
always be abnormal events in the region. In the simulation,
we first let R change from1 distance unit to500 distance
units. From Fig. 9(a), we can clearly see that the accuracy is
increased with the growth of the size of the sensor region in
the beginning part. Then, the accuracy maintains stabilization,
and it goes down afterR is larger than320. In order to clearly
observe the growing pattern in the beginning part, we make
another simulation. This time, we letR vary from 1 to 90
distance units, and the simulation result is shown in Fig. 8(a).
The results of the real traces are respectively shown in Figs.
8(b) and 9(b). Each data point in the picture is the average
value of50 test results.

In the second part of our simulation, we assume that the
total number of adversaries is not available to the center server.
After observing the collected data for a while, the server uses
the “max cluster” algorithm on the suspected degree data set.
In order to increase the difference between honest users and
adversaries’ suspected degrees, we increase the length of our
simulation’s time to at least 300 time units (300×60 seconds).
We repeat each simulation50 times.

Fig. 10 shows the relationship between the length of ob-
servation time and false positive, false negative. All of the
simulation settings are the same as the settings in Fig. 5, except
that the observing time is 500 time units. From the simulation
results, we can clearly see that observing longer will increase
the accuracy of detecting the adversaries, and high adversary
density requires more observing time to get an accurate result.

Fig. 11 indicates the relation between the encounter sensor
range and the accuracy in false positive and false negative
formations. Similar to previous evaluations, we made two sim-
ulations. We first checked the change pattern in the accuracy
from 1 to 81 distance units, then we tested the overall accuracy
changing pattern in which the sensor range varied from10 to
310. The simulation results are consistent with our first part’s
results.

Fig. 12 illustrates the relationship between the accuracy and
the adversaries’ density. In the simulation, we changed the
adversary density from1% to 25%. Our simulation shows
that our algorithm has very high accuracy when the adversary
density is less than15%. Higher adversary density requires
the server to observe the data for a longer period of time.

Our last simulation is about the user density in an area
of fixed size. Although the adversary density may be the
same, a higher user density can cause more chances for having
encounters with others. In the simulation, we set the adversary
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Fig. 10. Observing time VS false positive and false negative.

density as20%. Our simulation results are in Fig.15, which
shows that a higher user density can increase the speed of
adversary detection, and it can also increase the accuracy of
the detection.

In summary, we considered four key factors which can
influence the accuracy of our algorithm. We found that ob-
serving the trajectories longer will improve accuracy since
this increases the probability of abnormal events. If the total
number of users is fixed, then increasing the number of
adversaries in a target region reduces the accuracy of our
algorithm. When the user density becomes larger, the accuracy
of detection will also be increased since it increases the
probability of having encounters in a fixed size region. We
also determine that increasing the users sensing range will
also improve the accuracy of our detection algorithm.

VII. F URTHER DISCUSSION

Here, we discuss some additional issues regarding our
solution:

Adversary reporting behavior. In our paper, we consider
that the adversaries continuously report some fake locations.
An alternative is for the adversary to mix some real locations
with fake locations to try to avoid detection. However, the serv-
er can easily detect the abnormal data: the distance between
two reported locations cannot be larger than the maximum
speed. If the adversaries only report some fake locations,
which are close to the real ones, the fake paths may not result
in a shorter, nonexistent path. Hence, we only consider the
case that the adversaries continuously use fake trajectories.

Effect of the number of users on detection.Our method
does not require a minimum number of users in a fixed size
area in order to detect dishonest users, but we do require
that the number of honest users must be larger than that of
the dishonests. From our simulation part, we have already
seen that the smaller the adversary density is, the better our
method’s performance is.

Adversary framing the honest user. Instead of creating
a fake and short path, the adversary can also try to frame
the honest users by maliciously reporting a false encounter.
Our method can deter this condition since our inconsistency
penalty counts on both users. Framing other users will also
expose the adversary himself.

Adversary’s long, fake path.One attack that is difficult to
defend against is when the adversary reported a nonexistent,
relatively longer path between two locations. Later, as new
trajectories are added to the server, that nonexistent trajectory
may become part of the shortest path between the two lo-
cations; the case rarely happens if the user density is large
enough: the probability of encountering with nobody is very
small. In order to solve the case, during the phase of building
the trajectory map, we can only use the road segments which
have already been covered by many users. By this way, the
unconcluded adversary cannot launch the attack.

VIII. C ONCLUSION

In this paper, we consider the problem of wormhole attacks
in cooperative trajectory mapping. We propose a witness-based
detection and isolation algorithm that is effective against mul-
tiple, non-collusive, adversaries. We use extensive simulations
to validate our solution. Our future work intends to consider
two extensions. The first is that we intend to explore a stronger
attack where the adversaries can collude. One possibility is
to combine secure localization techniques that change the
functionalities of the APs together with our witness-based
approach to detect colluding adversaries. The second extension
is to build a real system and evaluate our solution.
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[24] S. Čapkun, L. Buttyán, and J. Hubaux, “SECTOR: secure tracking of
node encounters in multi-hop wireless networks,” inACM Workshop on
SASN, 2003.

[25] I. Rhee, M. Shin, S. Hong, K. Lee, and S. Chong, “On the levy-walk
nature of human mobility,” inIEEE INFOCOM, 2008.


