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Abstract—Cooperative trajectory mapping is an emerging
technique that allows users to collaboratively map a persda
movements without using GPS measurements in indoor scenas.
This is accomplished by letting users periodically transntilimited
amount of information, collected from their mobile phones,to a
central server for processing. Cooperative mapping solutins have
been proposed for applications ranging from people localiation
to traffic monitoring. In this paper, we consider the problem
of fake trail attacks in cooperative trajectory mapping. In a
fake trail attack, the adversary seeks to create a frauduleh
shorter path between two locations. The unique characteritcs of
cooperative mapping make conventional wormhole defensestich
as packet leashes, unsuitable. We propose an efficient algbm
which can successfully deter an adversary from launching sth an
attack, and we validate the effectiveness of our solution tlough
extensive simulation experiments.

Index Terms—Fake trail, localization, navigation, security.

I. INTRODUCTION

the background map is not available to the server). Assuming
that A is walking faster thanB, A will eventually catch up
with B. In Fig. 1(a), a malicious usendv, reports a fake
path. The depository may use this incorrect information and
compute a different path foA. This path is incorrect since

it requiresA to go though the walls of a room, as shown in
Fig. 1(c). Without adequate protection from malicious sser
the resulting trajectory map will be inaccurate.

In our paper, we nhame this type of attackfake trail attack
since the adversaries launch the attack by reporting sokee fa
trajectories or fake encounters with other users. The fadkik t
attack is similar to a wormhole attack, considered in ad hoc
networks [9], since we can consider the intersections agsod
and road segments as links of nodes. In a traditional worenhol
attack, the adversary will maintain an out-of-band coninact
between two physical locations in the network. Using this
out-of-band connection, the adversary creates a wormhate t

The functionalities of smartphones continue to grow witban let nodes that are far away from each other appear to be
many such phones now being equipped with hardware suséighbors [10]. As a result, the routing algorithm in ad hoc
as sensors and accelerometers. Cooperative trajectory magworks will report an incorrect path between two locadion
ping is an emerging technique that takes advantage of tineour cooperative trajectory mapping problem, an advgrsar
capabilities of these smartphones to allow users to combith@t reports a fake path between two locations will create a
the data collected from their phones to create maps of usasrmhole between those two locations. The effect is the same
movements in an unknown indoor region. This type of mags the traditional wormhole attack since the central depysi
is known as atrajectory map Trajectory maps are used inwill use this incorrect information to derive incorrect patfor
various applications such as people localization [1]4j8lic  users.
transportation tracking [4]-[6], and traffic monitoring] [7 However, the unique characteristics of cooperative mappin

Cooperative trajectory mapping typically does not use thmake it difficult to apply existing wormhole defenses.
phone’s GPS in order to avoid the weak signal issue inFirstly, traditional wormhole detection mechanisms assum
indoor conditions. Instead, the smartphone’s accelerenasid that every node’s sensorial rangeis We can estimate the
compass are used to determine the displacement and mowigjance between any nodes based on the neighboring table.
direction of a user [8]. This data is periodically transetttto In our model, the length of each road segment may be not the
a central depository which collects and processes thengadisame; the number of intersections is not a constant but will
from multiple users to arrive at a trajectory map. Prior work grow.
cooperative trajectory mapping focuses on building théesys ~ Secondly, conventional wormhole attacks are stronglyt+ela
and improving map accuracy, and assumes that all partitspaed to the geometry of the network: most wormhole detection
are honest. However, the presence of malicious users can halgorithms assume that partial information about a wormhol
a detrimental effect on the final trajectory map. free case is available. However, in cooperative trajectory

We can illustrate the effects of a malicious user in Fig. Inapping, the original map data is not available to the server
Here, we assume that the trajectory map is used to locatd astly, traditionaltime and spatial leasthased wormhole
friends in an indoor scenario. In Fig. 1, usdris trying to defense approaches let the data packages identify the worm-
locate usem3. Using the collected data (Figs. 1(a) and (b)), theole; however, in our problem, we have people following
central depository computes the shortest path fridsncurrent the route rather than packets. Unlike packets which can be
position to B (shown by the arrow lines in Figs. 1(c) and (d)retransmitted easily, moving people to alternative roigéisne



Il. RELATED WORK

The idea behind the cooperative trajectory mapping problem
considered in this paper was proposed by [8]. There, a mobile
social network-based navigation system is designed. Eseh u
periodically reports his trajectory and encounter infatiorato
the server, then the server can reply with a routine to the use
in order to help the user find others. Other work by [11], [12]
also used similar ideas for cooperative trajectory mappihg

I ‘:l D ’ ﬁ I :l D main difference is that prior work only considers honestsise
Our work focuses omon-colluded dishonest users that will
[ [ intentionally report incorrect paths to disrupt the system
BN [
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(a) reported trails with adversary  (b) reported trails without adeversary

] ([ Detecting fake paths in cooperative trajectory mapping
I—I [] ﬁ ’_l [ shares similarities with traditional wormhole detecti_amaid
A A hoc networks. In a wormhole attack, the adversary will aftem
[ | | & [ [ | ([ to convince other nodes that a path exists between two loca-

tions when, in fact, there is no path between the nodes. Using
the same methodology as [10], we divide wormhole detection
Fig. 1. The effect of a wormhole attack. There are two honestaiand technlque_s into centralized anq decentralized so_lupons.

one adversary in the example. Fig. 1(a) shows the reporagettories of the ~ Centralized wormhole detections, such as statistic detect
thre_e users. Fig. 2(b) are t_he (eported trajectories witttoes adversary. The [13]-[15] and multi-dimensional scaling [16], [17], relyahe
routine results are shown in Figs. 2(c) and 2(d). The shadeasarepresent server knowing certain node distributions or network gebme
rooms, and we assume that each room has only one door: peopietogo ™, . . . L .
through the rooms. ric layout information, and using this information to ddtec
the wormhole. However, in our trajectory mapping problem,
the server does not have any knowledge about the real map,
except for the reported moving trails of users. In fact, the

h Indour p_aper,f ? Eovel_;:entralgze(cj: alg(_)drlth_m lshde3|gned f%rver builds up a map using the mobility paths of users. Thus
the etect!on_o axe trall attacks. Considering the urmosty xisting centralized wormhole detection techniques cabeo
of a user’s instant location, we first estimate the feasib plied to our problem

position of every user attimebased on the repprted.trgjectory. Decentralized wormhole detection techniques rely on the
After that, we determine whether two users will definitelyda nodes within the network to monitor the other nodes or

physical encounters, may have physical encounters, or ta transmissions to detect a wormhole. Work by [18]

dhefmltely n(()jt. Then, we compj\re I?UL estlr_natlon_ result_s Wi 0] requires a node to monitor the topology structure of its
the reporte encountgr recoras. there is an inconsigte ighbors, while [21] lets the node monitor the input and
among the data, we will give some penalty to the users. AftE

e

(c) wrong routine (d) correct routine

consuming.

. i ) ﬁtput traffic flows. Other techniques that rely on cryptpgra
observing enough time, we use two thre’?h?Ids to classify t € onitoring include packet leashes [22], TESLA [23], and

us(ejr? into_ t_hree groues: “r;og_eﬁst gro_Uﬁ ' adv?]rsadry agrrfoueistance bounding [24]. The main difference is that, in our
g_rf'_f suspicious group”, and differentially use the datariro problem, an individual node-reported path may not be used
ifterent groups. until it can be associated with information from a fixed AP

The contributions of the paper are as follows: or the global uniform coordinate system. Thus, a node cannot
1) We are the first to explore the problem of fake trafnonitor other nodes in our problem.
attacks in the context of cooperative trajectory mapping. I1l. BACKGROUND

2) We propose a witness-based detection algorithm tha . . e
) prop g [ln this section, we will first introduce the system model

is effective against multiple, non-collusive, adversgrie. L :
. : in_our problem. After that, we will discuss how to build a
Our algorithm acts as a deterrent to adversaries seekln ;
rajectory map based on the system. Finally, the adversary
to attack the system.

3) Extensive simulation experiments were used to vaIida%Odel will be presented.

our solution. A. System Model

The remainder of the paper is organized as follows. In A cooperative trajectory mapping system has the following
Section I, we introduce some related work. The system modBree basic components.
and attack model are given in Section Ill. In Section IV, we 1) A service providefThe service provider deploys a server
provide theorems and a corollary for wormhole detectio, an to collect user data and to use that information to build
a novel wormhole detection and isolation algorithm is pnése and prune the trajectory map. The provider also provides
ed. The performance analysis and evaluation are described i  additional services based on the eventual map, such as a
Section V. We make a conclusion and provide future research friend locator. Except the collected data, the server does
in Section VI. not have any domain knowledge about the real map.



— However, the trajectories of each user are recorded in
ID | length | direction |time

their own isolated coordinate system, which is only rekativ

=)

A |5 units| 0 tl
ﬁ 23232 570 g to the initial (unknown) location of the user [8]. If all of
B |4 units | 90 t4 ) the trajectories are connected with each other (spatial and

temporal encounters), the server can compute the rekativel

server P spatial relationships of intersections. Otherwise, wednae
6 & public location reference to provide unique spatial infation

encpunter encofinter . c about all of the users such that the spatial encounter ne&@Pan
l can also be used as a real physical encounter. In a coopgerativ
& >§ trajectory mapping system, an AP is randomly set at a place.
A When a user passes by the communication range of the AP,
' i the user will also record the AP as an encounter. From the
Fig. 2. System model. The system normally contains a cen@aler and traiectories of the users. who have AP encounter records. th
several users. Each user periodically reports his trajedt the form of jectories u » W Ve 7 u 3S,
displacement and direction. The access point is an optiorabonent, which users’ individual trails can be moved into a uniform cooseda
can increase the chance for error cancelation. system by joining the places of an AP encounter together.
After A has passed by B, who has passed an AP, the trail
the server E)q A will also join the uniform coordinate system since the
" . " . spatial relation betweeA and the AP can be obtained by that
3) Access point (AP)An AP is an additional, optional ‘1?3 and the AP. andd and B y
;gma?o\?\/?git' élltc\(/:v:SrL(s %Sin? fljvi(l;c;cat;]onsirci‘le rlizgibzu? The server applies two variables to store the reported data:
known. The AP willp eriodicall bpro);dcast beacong e first one is used to store the trajectories which havadjre
The hr ose of the F,)AP i toy uickly establish thé'oined the uniform coordinate system, and the second one is
_Purpos . d ,y used for temporarily storing the space-relation unknowisr
spatial relationship between each user’s local movemeer :
erefore, once a space-relation unknown user can referenc

trails and thg actual physmal coordinates. If all .Of th?o the AP, the server will move his historical trails from the
reported trails are noise-free and all of the trails are known group to the other group
interconnected with each other, the additional AP is o C . ' . .
useless. one application of Fhe trajectory map is a friend I_ocz_;ttor,
which can be accomplished as follows: every user periolgical
We assume that there afe’ users that participate in thisyeports his movement traces to the server, and the servessto
system and that everyone’s clock is loosely synchronizefie reported data. Periodically, the server will use the dat
Each user’s mobile phone is equipped with an acceleromeigild or update a map by adding the new found paths to the
a compass, a wireless receiver, and an encounter sengfip. Since the server records the current position of eaah us
The accelerometer and compass are used to determine {Ratservice provider can use the built map and the recorded

user’s displacement and direction, respectively. The les® |ocation to find the shortest routine between users.
receiver, for instance a WiFi radio, is used to receive beaco

transmitted from the AP. The encounter sensor is used @G Adversary Model

periodically signal the user’s presence as well as recoed th The goal of an adversary is to launch a wormhole attack
presence of other users. This can be accomplished usingyacreating a fake, shorter path between two locations.df th
Bluetooth module built into the smartphone. For instancgistance between the fake path and the real path is less than a
when user4 walks past use, A's phone will record as system defined valug,, then we consider it as an estimation
“encounteringB”, while B’s phone does the same. We us@rror. We assume that the server has some other algorithm to
the UDG (Unit Disk Graph) model to represent the sensorigkal with estimation errors. Thus, the adversary has tatsele
range of an encounter sensor. a fake path that deviates from an actual path by at I&ast

We assume that there are multiple adversaries, but they
are all working independently. The number of real users is

A valid user will maintain two lists in his smartphormaove- assumed to be larger than the number of adversaries. An
ment list(ML) and encounter lis{EL). The ML consists of a adversary can create a fake path by manipulating the ML
serial of displacement from the last recorded position. flike or the EL. The adversaries can modify or create any item
ples in ML are{senderI D, displacement, direction, time}. in their current ML and report them to the server such that
The encounter information, which is the information abowtome shorter, fake paths will be included in the trajectory
meeting with other users, is obtained by an encounterap. Adversaries can also modify or create any record im thei
sensor. When a device learns about an encounter withrrent EL and report them to the server such that some real
another device, it will create an entry in the EL, asisers’ trajectories will be wrongly added in the map, which
{senderI D, time, encounter’sI D}. The device of each usermay also generate some shorter but nonexistent paths.
will periodically report these two lists to the server via@ 3 In our paper, if the adversary reports a trajectory, which he
connection. did not follow, but the trajectory corresponds to an exiptin

2) Users.Users report their trajectories and encounters

B. Building a trajectory map



path on the map, we do not regard it as an attack. Howevand its corresponding time, there is uncertainty about #ge h
if the associated encounter information with this trajegtie  pening of encounters; (b) how to correctly assign a suspécio

wrong, we view it as a fake trail attack. degree to the found abnormal cases since assigning wrong
suspicious degree may cause an honest user to be regarded as
IV. DETECTION ALGORITHM an adversary.

In this section, we will present our adversary detectioB. Adversaries Detection and Isolation (ADI) Algorithm

algorithm. The structure of this section is as follows: I th  \when the server runs the ADI, it traverses all displacements
beginning, we will present the intuition behind our solatio 4nq encounter records to find whether there are abnormal case

Then, our adversaries detection and isolation (ADI) atgai iy which the trajectory information is inconsistent witheth
will be discussed in detail. The trajectory-based encaunt@ncounter records, as shown in Algoritim

type prediction is a key function used in the ADI algorithm.

We will also discuss this prediction in this section. Algorithm 1 Adversaries detection and isolation algorithm
3 (ADI)
A. Intuition 1: SD.suspeet 0, SD.witness- a small non-zero number

each time period” do
if the result of TBEP (Algorithm2) or encounter records
satisfy the requirement of being a witneben

A key feature of cooperative trajectory mapping is that Wher‘?f for
a user encounters another user, each user will indepeyden%l

report encountering the other user to the server. The iotuit 4. SD.witness=SD.witness+
behind our algorithm is to make use of this feature to deted: if the result of TBEP conflicts with encounter recotdsn
an adversary. We illustrate the intuition using the follogi 6: SD.suspeetSD.suspecti

7 Find the suspects by threshold

example. 8: Build trajectory map without using the data of suspects
Consider an adversary that is physically at locatiofioca)  o; Return: identities of suspects and the cooperative trajiestmap
but reports to the server that he islatg. Since the adversary

is not atloc, he cannot determine whether there are any USerS o beginni f the ADI algorith h pair of
at locg. Considering that there is a large number of users in n e beginning of he algoriinm, each pair of Users
real applications, the probability of guessing correctlyery u andv is assigned with a suspected deg&®(u, v).
small, and we do not consider this case. Now, let us assume SD(u,v) = SD.suspect
that an honest user is &ftcs. Since the adversary is notlatg, ’ SD.witness
the honest user does not report encountering the advers@ihe initial value of SD(u,v) is zero. The suspected degree
This results in an inconsistency, or abnormal eventsince consists of two parts. The first part (SD.suspect), the nu-
a supposed encounter did not occur. The honest user hefggator, is a suspected penalty counter. The ADI algorithm
acts like awitnessthat can be used to identify an adversarywill check every users’ reported displacements. Based en th
Over time, an adversary will be associated with more abnbrntisplacements, we can estimate the possible encountermsfyp
events than honest users, and the server will use this asrismelae users. The trajectory-based encounter predictiormitigo
of identifying adversaries. (TBEP) will be presented in the later part of our paper. Once
Based on the above idea, in this paper, we present tive algorithm detects an inconsistency between the eneount
adversaries detection and isolation (ADI) algorithm. Ire thprediction result and the reported encounter informattha,
ADI algorithm, we assign a suspected degree to each useD(u,v) of the users will be given a penalty. Admittedly,
The suspected degree presents the percentage of abnoemahdversary with knowledge of the ADI algorithm might
events to the number of encounters. The algorithm perididicaintentionally frame honest users by reporting false entensn
checks the intersections of each pair of users, estimatiag ¥e will discuss some details in Section VII. The second part
possibleencounter-typeof the users. There are three typegSD.witness), the denominator of the suspected degremd®c
of encounters: two users cannot encounter, may encourttes times of being a witness: (i) the user’s trajectory emteu
or must encounter with each other. Then, we use the estith others’ trajectories, or (ii) there is an encounteramp
mated encounter-type to compare with the reported encourdbout the user.
information. By this way, we can find the abnormal cases: After observing the reported information for a long enough
(i) must meet with no encounter, (ii) impossible meet wittime, we can classify the users into three groups: an “honest
an encounter(s), and (iii) those with a single-sided ent&ungroup”, a “suspicious group”, and an “adversary group” by
record. We update the suspected degree based on the detagsey two pre-defined cluster thresholds, threshbldand
abnormal events. After enough data is collected, we use ptiereshold 2 (threshold1 > threshold 2). If the value of
defined thresholds to find out the identities of the advegsariy" SD(u,v) is above threshold or below threshol®, the
suspicious and honest users. corresponding users belong to the “adversary group” or the
The key challenges behind our algorithm are: (a) how ttonest group”, respectively. The remaining users falbint
correctly determine abnormal events from a set of trajéegor the “suspicious group”, which needs to be further investi-
and encounters. Since the exact movement patterns of ugated (observing more time). In the phases of building the
are unknown and the server is only given the displacemenrtsoperative trajectory map, we first build the map only using




TABLE |

the trajectories of the honest users. Then, we only paytiall TABLE OF NOTATION FORTBEP
and temporarily revise the map if there is no path between . . .
two users without the corresponding paths from the susgcio| s beginning shared time of two displacemerjts
group’ trails. We do not use the data from the adversary grouptz_______ | end shared time of two displacements
{(zi,yi,t;")} | a series of displacements of usérin T
C. Trajectory-based Encounter-type Prediction (TBEP) Smaz maximum speed
. . . . EC potential encounter conditions and time

The function of the TBEP_aIgorlth_m |s_to estlma_lte the—; length of a displacement
encounter-type of any two given trajectories. In this part, 57 head boundary function
we will first present the definition of some terms which SFr tail boundary function
we will use. Then, we will introduce the TBEP algorithm.| £R encounter records
Finally, some related theorems will be presented. The idetaj 2 sénsing range ]
of the help functions, which the TBEP algorithm calls, will_LZ50 possible trajectory bouncary function

. . - I1T() time-space relation function

be discussed in the next section.

We will illustrate TBEP by using the example in Fig. 3Algorithm 2 Trajectory-based encounter prediction (TBEP)
There are two displacements of usetsand B (Fig. 3(a)). algorithm
We assume that they f|n|shed the displacements at the SAME oyt (22, g 1)), (22, 57, 1P) ], Smaes R
time. If we can obtain the instant speed of the users at any output: EC
time, we can clearly find out when and where those two users Compute SFy and SFr of both A and B, by run
met with each other in the past. However, determining the PTB({(zf, v, t/)}, {(«7,y,t7)}, Smaz, R). .
exact position of each user at any point in time is difficult to% if IT({(27', yi', )}, {7,y 1)}, R) can encounter in cor-
L . . . . responding timethen
obtain without kn_own_wg_ the instant _sp_eed. Kn(_)w_lng the mfsta 5. EC.Type ="must meet’, EC.Time = corresponding time
speed of a user is difficult to obtain in a realistic scenario. g g|se
However, considering the maximum speed limitation, wer: it IT({(z2, vt} {(«?,y2,t5)}, R) cannot have en-
still can find a users feasible position bound at any time. ~ counter in corresponding timiaen .
The feasible position bounis a time related function, which & EmCéType ="cannot meet’, EC.Time = corresponding
restricts a user's possible position at a given timeby o 0
indicating the farthest and nearest locations of where e u 10 EC.Type =“may meet’, EC.T'ime = corresponding time
could have reached. If the user moves along a line, there are Sort ER’s tuples according to encounter type and time.
two end points of the position bound. The first point is used f&&: Return: encounter conditions
describe that the user waits at the beginning, then movéseto t
destination with maximum speed; the second point is used to
describe that the user first moves with maximum speed, thBaundary functionPT B()) to compute the users’ feasible
waits at the destination. As a result, the feasible positiba position bounds in X-Y-T space as: the space functionisf
user at timet will be a segment. head end pointSFy(A); the space function ofi’s tail end
Definition 1: for any displacement, going along the movingoint, SFr(A); the space function oB’s head end point,
direction, we name the farthest position that the user cdanage SFq (B); the space function oB’s tail end point,SFr(B).
at timet as the head end point, and the corresponding sensorTheorem1: If all of the distances of SF(A), SF(B)},
area as head sensor area; we name the nearest position {&Er(A), SFu(B)}, {SFu(4), SFr(B)} and {SFr(A),
the tail end point and call its sensor area as the tail sensdfFr(B)}) are greater thanR in this time period, the two
area. users cannot meet with each other, and therefore the server
Fig. 3(b) illustrates the feasible position bounds of onerusshould not contain the corresponding encounter records, as
The user’s real moving pattern could be any lines inside tisbown in Fig. 4(a)
parallelogram, except that the slope of the line must belsmal Proof: It is obvious since all of the distance between the
or equal to the slope of bounds. Since each user is equipped users are greater than tiie [ ]
with an encounter sensor, the shape of the possible sensofheorem?2: If some of the distances, but not all of the
region of a user at any time is similar to aflipsg which is distances of {SFy(A), SFu(B)}, {SFr(A), SFu(B)},
the union of a group of circles whose center is located at th§ Fy (A), SFr(B)} and {SFr(A), SFr(B)}) are greater
possible position segment, as shown in Fig. 3(c). than R in this time period, the two users may meet with each
TBEP algorithm. As one of the key building blocks of other.
our solution, the TBEP algorithm presents the way for the Proof: It is also obvious since some trajectories of the
server to determine the encounter-type of the given trajisst, two users can encounter with each other and some camnot.
which can be further used to determine whether abnormalTheorem3: If all of the distances of SFy (A), SFu(B)},
events occur. After receiving the respective displacenoént {SFr(A), SFy(B)}, {SFu(A), SFr(B)} and {SFr(A),
two users, the server first uses the position functig)f to SFr(B)}) are less thanR, or are equal toR in this time
estimate the latest moving time and the fastest arriving tinperiod, the two users cannot meet with each other, and there-
of a user. Then, the server applies the Possible Trajectdoye the server should contain the corresponding encounter




TABLE Il

records. TABLE OF NOTATION FOR HELPER FUNCTIONS
Proof: The feasible position bounds of the two users are
two parallelograms in X-Y-T space. We name the feasible (1) user’s position at in system’s coordinate$

position bound in X-Y-T space as tifeasible Position Region | Jmaz . the.maxiTl(er.n slpeed - ,

Since the space is continuous and all of the edges satisfy the(IZA’i’L 7 1 f‘ p'?.ce ° h |sgAaC(temter(Ijtst,ho cl;.SATn T !

conditions for encountering with each other, any pair oé$in E Etg Lt 8; Igg:t:gz xhg:eA Z:c;eed theediesﬁizzegeenq

inside the parallelograms must encounter with each otimer. tA ¥ fime that userd began the dispFI)acement
The relation betweerRk and the distance of two lines can t%‘ fime that userA finished the displacement

be computed by the Intersection functid()). d length of a displacement

(z”(t),y*(t)) | possible location ofd at given timet

) the location ofA at any time
R sensing range
a,b,c,d temporary parameters

V. TECHNICAL DETAILS

In this section, we will present the technical details abou
our solution. First, we will introduce the position funatio
which we used to indicate the feasible position of a user at a
given time instance in X-Y coordinates. The possible tt@gc B. Possible trajectory boundary (PTB()) function
boundary function is the extension of the position function
X-Y-T space, which will be discussed at the second part af thi . . ]

. . ) . . of a user |n X YT space. It has four inputs:
section. After that, the intersection function will be preted. .
. . ) . Ly Y {28, yB tP)}, Spmax and R. The user first

We use the intersection function to estimate the encouniérZ v

moves Wlth maximum speed to finish the reported displace-
conditions of two users’ feasible positions. In the lasttpar

ent, then stays still at the end of the displacement; the
of the section, we will define what is an abnormal event an

user can also wait first at the beginning point, then finish the
will explain why we classified the entire encounter conditio disnlacement iust on time. Therefore. there are two trafect
into three groups: “probably honest”, “probably dishofest P J : ' ajy

N - boundary functions. The head boundary function is:
and “uncertain”.

The PTB() function provides the two position bound-

e S T P T T

A. Position functiong()) Azt oyt —yd T d/Sman

Ty — I3
Yhe tail boundary function is:

Given one displacement of a user’s trajectory, the locati
of the user can be presented pft), as shown in Fig. 3(b).
Suppose that a user reported one displacement from location 24 —z{'  yA -yt 4 — (t4 — d/Simaa)

p(t1) to p(to) at time fromt; to ¢ (t1 < t2), and the length ad — - T d/Smaz
of this displacement equats We also assume that the speed ) ) )
range of a user i, Spaz). Given a pair of displacements, if we know that the users
covered the displacements by a constant speed, we can use
[p(t1), p(t1) + §mw(t —t1)], theintersection function (IT()Jo check whether an encounter
te [tl,tz _ ‘Smwd happened.
0 [p(t1) + Smaw( —la+ %‘ll)aﬁ(tl) + Smaa(t = t1)].C. Intersection (IT()) function
4 te (t2— IS Nk ti+ |§ m|] We use the IT() function to determine whether the two
[ﬁ(t1)+§mam( —ty+ = |) P(t2)] given users can encounter each other. It has three inputs:
e {(z2,yA M}, {(xB,yP,tP)} and R. Assume that there are
(tl T 1S \’tQ] two users namedd and B They all report one displace-

In order to simplify the solution, we add a new dimen5|orr1nent and we also assume that they all moved at maxi-

“time” into the traditional X-Y coordinates. Therefore,gri mum speedSiy,q;. We assume that the beginning time is
3(a) can be converted to Fig. 4. The displacement of eadh’ and the end time ig3. At the same “”.‘e’ the |n|t|all
user is represented by a parallelogram in X-Y-T space. Tﬁgsnmn 's («',yi'), and the end of the displacement is
projection of the parallelogram on the X-Y plane is the sar’r‘ég2 ’ 2 Therefore the dlsplacementﬂfcan be represented
segment in Fig. 3(a). The lines, which are parallel with th s (@i’ ', 1), (23 ’yQ’ )) Slmllarly, we also havel’s
t-axis, represent the situation of not moving. Because of t |splacement ag(a?’, y7, 1), (23, 47, 13')). Now we want

speed limitation, the slope between any two points in theesa compute when and where these tWO users can generate

parallelogram should be less or equal to the maximum spee encounter records. Firstly, the trajectory of a user twan

The real trajectory of the user in X-Y-T space will be a curviePresented as follows in a 3-D space, where the x-axis is one

in the parallelogram. Hence, # and B meet with each other, possible moving direction and the y-axis is the perpenéicul

their real trajectories must intersect in X-Y-T space. InYX- direction to the x-axis. The third direction is time.
T space, the position functiofi(t) will be converted to the et —af oyt -yt -]

possible trajectory boundary functio®{" B()) . o —af oyt —yt -t
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(a) two reported trajectories (b) the position bound of a user (c) the possible sensor region of A

Fig. 3. Relation between two users’ trajectories. Fig. 3@ trajectories with spatial intersection. Fig. 3(b) isdeasible position bound; the user’s real
instant speed could be any line inside the shadowed pamilieh, whose slope is smaller or equal to the maximum spegd3f€) user’s possible sensor
range at timet.

The trajectory of B from tP to ¢t can be represented as The “probably honest” group represents the conditions: (i)

follows: 5 5 5 5 5 .5 at a given timet, the position bounds of two users satisfy
rT o Yy —yr T -t the condition of “must meet,” and there is a pair of accordant
of —ab yB—yB BB encounter records in the server; or, (ii) the trajectoriesvo

Hence, to a given time, whether a piece of encounter record!Sers satisfy the case of “may meet’, and a pair of consonant

will be generated or not can be determined by the truth val§gcounter records is stored in the server. If both of the two
of following formula: users are honest, the happening of the conditions (i) apd (ii

is obvious. However, if one of the users or both of them are
(2 (t) — 2B()? + (¥ (t) — yB())? < R? the adversaries, then they can only be classified as “prpbabl
honest” only if the adversary can correctly guess the itienti

; A B A B
After using? to represent:”(t), =7 (t), y(t) andy~(t), we of the other party. The probability of this is negligible.

can get: ) . . )
g The “uncertain” group also consists of two conditions: (i)
(a® + A t* 4 2(ab + cd)t + (b* + d* — R?) <0, the trajectories of two users satisfy the case of “may meet”,
and there is not any encounter record; or, (ii) the trajéesor
where: indicate th dition of “ t meet’, and there i
of — 2t 2B B indicate the condition of “cannot meet’, and there is no
L Y. Y BYE encounter record. We cannot conclude anything about the
2 2 1 identities from these two cases. If both of them are honest
:vf;‘ _xfl‘l A B — B B A B users, these two conditions can happen; If there is one or
b=—(F—F)t +(——= )ty +z7 — ; . ; ;
A A (B _ 4B /"1 1 1 two adversaries, the two conditions can still happen with a
2 1 2 1 . . . . .
high probability. For the condition (i), when there is onlgeo
o= ys' —uit _ yy —yb adversary, the adversary can report a fake path, which has a
to —tf DB spacial intersection with the path of the honest user, aad th
A A B B real path of the adversary does not encounter the hone& user
d— —(%)t{‘ T (%)tf‘ Lyt —yB path. If both of them are the adversaries, they just repast tw
ty =t ty =1 spacial intersected paths, but they do not encounter ehehn ot
D. Abnormal Events in fact; then, the condition (i) happens. As for the condiitio

Here we define what is an abnormal event. From tl‘g) if there is a pair of “impossible meet” paths and thelrea
' : ath of one adversary does not encounter the other user, no

view of the server, it can observe tvyo things: trajectorleﬁs] tter whether the identity of the other one is honest or not,
and encounter records. The trajectories of two users hav

three encounter-types: must meet, potentially meet, andata Condition (i) can happen.. ] o N
meet. The encounter records about two users at a given tim&XCept the above conditions, the remaining conditions

can also be classified into three kinds: no encounter, sin@glong to the “probably dishonest” group where at least one
encounter, and two encounters. Based on the given trajestor®f the users could be an adversary.

we can classify the observations made by the server intoTheorem4: an adversary is more likely to be associated
three groups: an “uncertain” group, a “probably honest'ugro with an abnormal case than an honest user if the number of
and a “probably dishonest” group for all of tiekinds of real users is greater than that of the adversaries.
combinations. An abnormal case will fall under the “prolyabl Proof: assume that is the probability that two users meet
dishonest” group. with each other at a given time. Suppose that the number of



T One possible real
time position of

(a) cannot encounter with each other (b) may encounter with each other (c) must encounter with each other

Fig. 4. lllustration of encounter-type in X-Y-T space. Thargllelograms represent the feasible position regionssefsu Any line inside the region, whose
slop is small or equal to the maximum speed, may be the re@ninposition of the user. Fig. 4(a) two trajectories cartmmte encounter records. Fig. 4(b)
two trajectories may have encounter records. Fig. 4(c) ta@dtories must have encounter records.

real users isi, the number of the fake usersiisanda >> b. speed of users is represented $y,., and we mainly let it
For a real user, the reason for having abnormal data is thathee3 distance units per second. In each time unit, the user
encountered the adversaries’ real paths or fake paths.eflemandomly picks a speed frotto S,,.. to be the real moving
given the condition that a real user meets with another tser, speed in the time unit. During simulation, we randomly selec
conditional probability that the given user meets an abmbrmVg.,; users’ traces as the real users’ trajectories. We select
event is2b/(a — 1 4+ 2b). However, given an adversary, if hisN 4 users’ traces as the fake trajectories of adversaries, and
real trajectory comes across the trajectories of real userswe also selectV,r users’ trajectories as the real hidden
other adversaries’ real trajectories, or if the given agapr's trajectories of the adversarie$ar = Nap. After dividing
fake trajectory meets with the trajectories of real userstber the trajectory data set, we first compute the encounter dscor
adversaries’ fake trajectories, he may encounter inctamgis if adversaries report their real traces, which also meaeeth
conditions. Therefore, given the condition that a fake usare no adversaries.
meets with another user, the conditional probability thet t During the computation of encounter records, we assume
given user potentially meets an abnormal everit.is B that each user finishes the displacements by the average spee
in this segment. When the distance between two users isiless o
) ] o ) ) ) equal to the sensorial randg we record the identities of these

In this section, we will f|rst c_iescrlbe our &mulaﬂon_setuptwo users, and we also record the beginning and the end time
Then, our evaluation metrics will be presented. The simaniat o this encounter record. Then, we observe the displacement
results and analysis will be given at the last part of theisect 4t sers for a period of time. In each time period, we use
A. Experimental Setup the reported trajectories of users to check whether theze ar

We use Matlab to make the simulation. The users’ tra.esome abnormal cases. If we find an abnormal case, we will
; I€6ive a penalty to both of the users. After observing the sace
tories are generated by Levy walks mobility model [25] an

, r a pre-defined period of time, we rank the suspecting list
users’ real traces :

. ; . . in descending order and pick the fir&4 R users as the
In the simulation based on synthetic data, we first random versaries 9 P A

generatebo test groups, and each group contaln_s the trajec-ln the simulation based on real data, we have the moving
tories of 50 users. We let the period of the location updates

. : trajectories of35 users. We randomly set the identity of users
be 60 sec, and we observe each user 69000 time units, as real users’ trajectories, adversaries’ real trajessorand
We set the size of the target area5@¥ x 500 distance units. ! ' J

The silence time period is changed frénto 10 seconds. The adversar!es fake trajectories. For example, if there &are
o , adversaries, then we randomly chogs&om the data set as
mobility model’'s parametesr equalsl, and 5 also equaldl.

We also set the minimum flight length 68 distance units, and their real moving paths, and we randomly choose anainer

we set the maximum flight length as0 distance units. When as their reported fake trails. The data set, which we used,

. : records the positions of a user 2604 reporting time units.
users get the boundary of the target region, we reflection : .
The setting for the rest of the parameters is the same as the
to ensure that the total number of users do not change.

. setting in the synthetic data based simulation.
We assume that the encounter sensor range Ia the sim- Considering the lenath of ob tion. the ad ias’ d
ulation, we mainly useR = 5 distance units. The maximum __ ~°"s! erlng’ € 1ength ot observation, e"f‘ versarnes- de
sity, the users’ density, and the length of users’ senskaiajes

1The real data comes from RAWDAD, which is a community reWill effect the accuracy of the adversary detection aldonit

source for archiving wireless data at Dartmouth. The datavee used we use the simulations to analyze the following relations:
names ncsu/mobilitymodels/GPS200907239220090723Q0a8t. The data

was collected by GPS from NCSU, North Carolina, USA, 2009. 1) The relationship between the length of observation time

VI. PERFORMANCEANALYSIS AND EVALUATION
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and the accuracy of our proposed d.ete,ction algorithMyhere FP is the number of false positive, FN is that of false
2) The relationship between adversaries’ density and thggative, TP represents the total amount of true positive, a

accuracy of our proposed detection algorithm. TN represents that of true negative.
3) The relationship between users’ density and the accuracy
of our proposed detection algorithm. C. Simulation Results

4) The relationship between the length of users’ sensorialFig. 5 indicates the relationship between the accuracy of
ranges and the accuracy of our proposed detectiglr proposed algorithm and the length of observing time. In
algorithm. the synthetic data-based simulation, which is shown in Fig.

B. Evaluation Metric 5(a), we randomly seleetd users fror_n each test group as the

real ones, and we also randomly pis%, 15%, and25% of

Our evaluation was independently made in two d'ﬁererﬂ}sers as the adversaries. We use our algorithm to detect the

assumptions, and therefore two metrics were used in qur ; .
wormhole makers by observing the traces of users for a period

evaluation. In the first part of our simulation, we assumec o (100 x 60 seconds). We repeat our experiments

E: davtetrrs]zrifa esntz![hsoeurvE rtr?i(; maiiivxw ﬁ?ngzgggéoiilr;;;?sr t?rfnes and use the average value of results to draw Fig. 5. From
j 9 P ' the simulation results, we could find that the accuracy of the

S|mullat|on results are still valuable if the §00|al scistgtican roposed algorithm is increased with the growth of obsegvin
predict the average number of adversaries by some stanﬁ

model since the auxiliary information will increase the epe ﬁlﬁe' From an analytical point of view, as the observing time
yu . ) ‘5@ increases, there will be more intersections between users’
and the accuracy of detecting the adversaries. The f|rs1|<met

r . . . .
. ; .~ “lTrajectories in temporal-space. Hence, we can obtain more
we used to evaluate our algorithm is term&cturacy This is “witness points”, which may contain the abnormal cases.
computed as the following:

Fig. 5(b) shows the relationship between the length of

Number of successfully detected observing and the accuracy in the real trace. In our expetime
Total number of adversaries we randomly selec®5 users as the real ones andisers as
The second part of our evaluation is based on the assumptiba adversaries. We set the sensor rang&aglistance units.

that there is no auxiliary information about the number of ad\Ve repeat our experimenb times and get Fig. 5(b) as our

versaries. During the simulation, we use the cluster aflgori result. This result is consistent with the synthetic date&ult.

to automatically classify the users into two groups based onHowever, having more observing time also costs more

their suspected degree, which is computed by our algorithresources to compute. In order to compare the effectiveness

The metrics we applied in this part are False Positive Radé other components, in the later simulation, we always use

Accuracy =

(FPR) and False Negative Rate (FNR). 50 x 60 seconds as the default length of observing time, and
EP EN we use350 time units as the default length of observing time
FPR= ——, FNR= ——¢ in real trace-based experiments
FP+TN TP+FN P -
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sensor range and the detection accuracy. In the synthete da
based simulation, we selegh users’ trajectories as the traces
of real users in each test group, and we select anather
users’ trajectories as the real traces of the adversarten,T
we obverse50 x 60 seconds. Since our proposed wormhole
detection and isolation algorithm is based on abnormalscase
in the encounter area, the accuracy of our algorithm will be
increased when there are more encounter conditions. Using
a larger sensorial rang® will provide more chances for
encountering the other users. However, if the valueFof
exceeds a value, the accuracy will become less since thgre ma
always be abnormal events in the region. In the simulation,
we first let R change froml distance unit to500 distance
units. From Fig. 9(a), we can clearly see that the accuracy is
increased with the growth of the size of the sensor region in
the beginning part. Then, the accuracy maintains staklidiza
and it goes down afteR is larger thar820. In order to clearly
observe the growing pattern in the beginning part, we make
another simulation. This time, we IR vary from 1 to 90
distance units, and the simulation result is shown in Fig).8(
The results of the real traces are respectively shown in. Figs
8(b) and 9(b). Each data point in the picture is the average
value of 50 test results.

In the second part of our simulation, we assume that the
total number of adversaries is not available to the centeese

The ratio of adversaries out of the total number of partichfter observing the collected data for a while, the servessus

pants can be used to eyaluate the infl.uenc.e on accuracy. B “max cluster” algorithm on the suspected degree data set
6(a) represents the relation between this ratio and thetl@te |, , qer to increase the difference between honest users and

accuracy by using synthetic traces. With the increasinglbrarm
of adversaries, the accuracy of detection goes down sirece

adversaries’ suspected degrees, we increase the lengtir of o

imulation’s time to at least 300 time unit¥( x 60 seconds).

trust of users becomes less and less. Fig. 6(b) is our expetim o repeat each simulatidio times.
based on real data. We repeat our simulagortimes.

The density of users in a region is also an important fact@gryation time and false positive, false negative. All oé th
which influences the accuracy of detection. Fig. 7(a) ifafss  simylation settings are the same as the settings in Fig cepex
the relation between participant density and the accutacy.yhat the observing time is 500 time units. From the simufatio
the simulation, we randomly generaié test data sets, andegyts, we can clearly see that observing longer will iasee
we respectively check the accuracy from density equalingihe accuracy of detecting the adversaries, and high adyersa
per500 x 500 area to40 per500 x 500 area. Also, we assume gensity requires more observing time to get an accuratétresu

that the percentage of adversarie20¥ and40%. Fig. 7 is

Fig. 10 shows the relationship between the length of ob-

Fig. 11 indicates the relation between the encounter sensor

the average result of our simulation. From the image, we Cfghge and the accuracy in false positive and false negative
realize that a higher density of users will bring more accyra foymations. Similar to previous evaluations, we made two-si

which can be verified by our experiment results based on regtions. We first checked the change pattern in the accuracy
traces, which is shown in Fig. 7(b).

FlgS 8 and 9 show the relationShip between the enCOUn&fanging pattern in which the sensor range varied ftonto
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from 1 to 81 distance units, then we tested the overall accuracy

310. The simulation results are consistent with our first part's
results.

Fig. 12 illustrates the relationship between the accurady a
the adversaries’ density. In the simulation, we changed the
adversary density from% to 25%. Our simulation shows
that our algorithm has very high accuracy when the adversary
density is less thari5%. Higher adversary density requires
the server to observe the data for a longer period of time.

Our last simulation is about the user density in an area
of fixed size. Although the adversary density may be the
same, a higher user density can cause more chances for having

Fig. 13. User. density VS FP & FNencounters with others. In the simulation, we set the advers
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density as20%. Our simulation results are in Fig5, which Adversary’s long, fake path. One attack that is difficult to
shows that a higher user density can increase the speediefend against is when the adversary reported a nonexistent
adversary detection, and it can also increase the accufacyeaatively longer path between two locations. Later, as new
the detection. trajectories are added to the server, that nonexisterictay

In summary, we considered four key factors which camay become part of the shortest path between the two lo-
influence the accuracy of our algorithm. We found that olsations; the case rarely happens if the user density is large
serving the trajectories longer will improve accuracy sincenough: the probability of encountering with nobody is very
this increases the probability of abnormal events. If thalto small. In order to solve the case, during the phase of bujldin
number of users is fixed, then increasing the number thfe trajectory map, we can only use the road segments which
adversaries in a target region reduces the accuracy of tawe already been covered by many users. By this way, the
algorithm. When the user density becomes larger, the acguranconcluded adversary cannot launch the attack.
of detection will also be increased since it increases the
probability of having encounters in a fixed size region. We
also determine that increasing the users sensing range willn this paper, we consider the problem of wormhole attacks

VIII. CONCLUSION

also improve the accuracy of our detection algorithm. in cooperative trajectory mapping. We propose a withesetha
detection and isolation algorithm that is effective agamal-
VIlI. FURTHER DISCUSSION tiple, non-collusive, adversaries. We use extensive sitiarls

Here, we discuss some additional issues regarding éarvalldate.our solutlgn. Qur futurg work intends to conside
solution: two extensions. The first is that we intend to explore a steong

. . . attack where the adversaries can collude. One possibdity i
Adversary reporting behavior. In our paper, we consider

: . . to combine secure localization techniques that change the

that the adversaries continuously report some fake latstio . I, . ;
S . . _functionalities of the APs together with our witness-based
An alternative is for the adversary to mix some real location

with fake locations to try to avoid detection. However, tkevs approach to detect colluding adversaries. The secondsaten

er can easily detect the abnormal data: the distance betw'ese%O build a real system and evaluate our solution.

two reported locations cannot be larger than the maximum ACKNOWLEDGMENT
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